qpcpp/ports/freertos/qf_port.cpp
2024-06-12 16:30:04 -04:00

819 lines
31 KiB
C++

//============================================================================
// QP/C++ Real-Time Embedded Framework (RTEF)
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open source GNU
// General Public License version 3 (or any later version), or alternatively,
// under the terms of one of the closed source Quantum Leaps commercial
// licenses.
//
// The terms of the open source GNU General Public License version 3
// can be found at: <www.gnu.org/licenses/gpl-3.0>
//
// The terms of the closed source Quantum Leaps commercial licenses
// can be found at: <www.state-machine.com/licensing>
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// Contact information:
// <www.state-machine.com>
// <info@state-machine.com>
//============================================================================
//! @date Last updated on: 2024-06-11
//! @version Last updated for: @ref qpcpp_7_4_0
//!
//! @file
//! @brief QF/C++ port to FreeRTOS 10.x, generic C++11 compiler
#define QP_IMPL // this is QP implementation
#include "qp_port.hpp" // QP port
#include "qp_pkg.hpp" // QP package-level interface
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
#else
#include "qs_dummy.hpp" // disable the QS software tracing
#endif // Q_SPY
#if ( configSUPPORT_STATIC_ALLOCATION == 0 )
#error "This QP/C++ port to FreeRTOS requires configSUPPORT_STATIC_ALLOCATION"
#endif
#if ( configMAX_PRIORITIES < QF_MAX_ACTIVE )
#error "FreeRTOS configMAX_PRIORITIES must not be less than QF_MAX_ACTIVE"
#endif
namespace { // unnamed local namespace
Q_THIS_MODULE("qf_port");
// Local objects -------------------------------------------------------------
static void task_function(void *pvParameters) { // FreeRTOS task signature
QP::QActive::evtLoop_(reinterpret_cast<QP::QActive *>(pvParameters));
}
} // unnamed local namespace
// The following macro provides the number of free slots in the FreeRTOS
// queue.
//
// NOTE1:
// The official FreeRTOS API uxQueueSpacesAvailable() is not used
// here, because that API uses task-level critical section internally.
// Instead, the free slots calculation happens here in already
// established critical section. Unfortunately, the bizarre "information
// obfuscating" policy of FreeRTOS (incorrectly called "information
// hiding") forces the use of the StaticQueue_t with "dummy" members.
// This could potentially break in the future releases of FreeRTOS.
//
// Currently, the correspondence between xQUEUE and StaticQueue_t
// is as follows (see queue.c and FreeRTOS.h, respectively):
//
// xQUEUE.uxMessagesWaiting == StaticQueue_t.uxDummy4[0];
// xQUEUE.uxLength == StaticQueue_t.uxDummy4[1];
//
#define FREERTOS_QUEUE_GET_FREE() \
(m_osObject.uxDummy4[1] - m_osObject.uxDummy4[0])
// namespace QP ==============================================================
namespace QP {
//............................................................................
void QF::init() {
// empty for FreeRTOS
}
//............................................................................
int_t QF::run() {
onStartup(); // the startup callback (configure/enable interrupts)
// produce the QS_QF_RUN trace record
#ifdef Q_SPY
QF_CRIT_STAT
QF_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_RUN, 0U)
QS_END_PRE_()
QF_CRIT_EXIT();
#endif
vTaskStartScheduler(); // start the FreeRTOS scheduler
QF_CRIT_ENTRY();
Q_ERROR_INCRIT(110); // the FreeRTOS scheduler should never return
QF_CRIT_EXIT();
return 0; // dummy return to make the compiler happy
}
//............................................................................
void QF::stop() {
onCleanup(); // cleanup callback
}
// thread for active objects -------------------------------------------------
void QActive::evtLoop_(QActive *act) {
#ifdef QACTIVE_CAN_STOP
while (act->m_eQueue != static_cast<QueueHandle_t>(0))
#else
for (;;) // for-ever
#endif
{
QEvt const *e = act->get_(); // wait for event
act->dispatch(e, act->m_prio); // dispatch to the SM
QF::gc(e); // check if the event is garbage, and collect it if so
}
#ifdef QACTIVE_CAN_STOP
act->unregister_(); // remove this object from the framewrok
vTaskDelete(static_cast<TaskHandle_t>(0)); // delete this FreeRTOS task
#endif
}
//............................................................................
void QActive::start(
QPrioSpec const prioSpec,
QEvt const * * const qSto,
std::uint_fast16_t const qLen,
void * const stkSto,
std::uint_fast16_t const stkSize,
void const * const par)
{
QF_CRIT_STAT
QF_CRIT_ENTRY();
// precondition:
// - queue storage must be provided
// - queue size must be provided
// - stack storage must be provided
// - stack size must be provided
Q_REQUIRE_INCRIT(200,
(qSto != nullptr) && (qLen > 0U)
&& (stkSto != nullptr) && (stkSize > 0U));
QF_CRIT_EXIT();
// create FreeRTOS message queue
m_eQueue = xQueueCreateStatic(
static_cast<UBaseType_t>(qLen), // length of the queue
static_cast<UBaseType_t>(sizeof(QEvt *)), // element size
reinterpret_cast<std::uint8_t *>(qSto), // queue buffer
&m_osObject); // static queue buffer
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(210, m_eQueue != static_cast<QueueHandle_t>(0));
QF_CRIT_EXIT();
m_prio = static_cast<std::uint8_t>(prioSpec & 0xFFU); // QF-priority
m_pthre = 0U; // preemption-threshold (not used)
register_(); // register this AO
// top-most initial tran. (virtual call)
init(par, m_prio);
QS_FLUSH(); // flush the trace buffer to the host
// task name provided by the user in QActive::setAttr() or default name
char const *taskName = (m_thread.pxDummy1 != nullptr)
? static_cast<char const *>(m_thread.pxDummy1)
: static_cast<char const *>("AO");
// The FreeRTOS priority of the AO thread can be specified in two ways:
//
// 1. Implictily based on the AO's priority (by the formula specified
// in the macro FREERTOS_TASK_PRIO(), see qp_port.h). This option
// is chosen, when the higher-byte of the prioSpec parameter is set
// to zero.
//
// 2. Explicitly as the higher-byte of the prioSpec parameter.
// This option is chosen when the prioSpec parameter is not-zero.
// For example, Q_PRIO(10U, 5U) will explicitly specify AO priority
// as 10 and FreeRTOS priority as 5.
//
// NOTE: The explicit FreeRTOS priority is NOT sanity-checked,
// so it is the responsibility of the application to ensure that
// it is consistent with the AO's priority. An example of
// inconsistent setting would be assigning FreeRTOS priorities that
// would result in a different relative priritization of AO's threads
// than indicated by the AO priorities assigned.
//
UBaseType_t freertos_prio = (prioSpec >> 8U);
if (freertos_prio == 0U) {
freertos_prio = FREERTOS_TASK_PRIO(m_prio);
}
// statically create the FreeRTOS task for the AO
TaskHandle_t task = xTaskCreateStatic(
&task_function, // the task function
taskName , // the name of the task
stkSize/sizeof(portSTACK_TYPE), // stack length
this, // the 'pvParameters' parameter
freertos_prio, // FreeRTOS priority
static_cast<StackType_t *>(stkSto), // stack storage
&m_thread); // task buffer
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(220, task != static_cast<TaskHandle_t>(0));
QF_CRIT_EXIT();
}
//............................................................................
#ifdef QACTIVE_CAN_STOP
void QActive::stop() {
unsubscribeAll(); // unsubscribe from all events
m_eQueue = static_cast<QueueHandle_t>(0); // stop thread (see QF::thread_)
}
#endif
//............................................................................
void QActive::setAttr(std::uint32_t attr1, void const *attr2) {
QF_CRIT_STAT
QF_CRIT_ENTRY();
// this function must be called before QACTIVE_START(),
// which implies that m_thread.pxDummy1 must not be used yet;
Q_REQUIRE_INCRIT(300, m_thread.pxDummy1 == nullptr);
switch (attr1) {
case TASK_NAME_ATTR:
// temporarily store the name, cast 'const' away
m_thread.pxDummy1 = const_cast<void *>(attr2);
break;
// ...
}
QF_CRIT_EXIT();
}
//============================================================================
bool QActive::post_(QEvt const * const e, std::uint_fast16_t const margin,
void const * const sender) noexcept
{
Q_UNUSED_PAR(sender); // unused when Q_SPY is undefined
QF_CRIT_STAT
QF_CRIT_ENTRY();
// find the number of free slots available in the queue
std::uint_fast16_t nFree =
static_cast<std::uint_fast16_t>(FREERTOS_QUEUE_GET_FREE());
bool status;
if (margin == QF::NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_INCRIT(510); // must be able to post the event
}
}
else if (nFree > margin) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool Id&ref Count
QS_EQC_PRE_(static_cast<QEQueueCtr>(nFree)); // # free entries
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolNum_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
BaseType_t err = xQueueSendToBack(
m_eQueue, static_cast<void const *>(&e), 0U);
// posting to the FreeRTOS message queue must succeed, see NOTE3
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(520, err == pdPASS);
}
else {
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_ATTEMPT, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool Id&ref Count
QS_EQC_PRE_(static_cast<QEQueueCtr>(nFree)); // # free entries
QS_EQC_PRE_(margin); // margin requested
QS_END_PRE_()
}
QF_CRIT_EXIT();
return status;
}
//............................................................................
void QActive::postLIFO(QEvt const * const e) noexcept {
QF_CRIT_STAT
QF_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_LIFO, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->evtTag_, e->refCtr_); // pool Id & refCtr of the evt
QS_EQC_PRE_(static_cast<QEQueueCtr>(FREERTOS_QUEUE_GET_FREE()));
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolNum_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
BaseType_t err = xQueueSendToFront(
m_eQueue, static_cast<void const *>(&e), 0U);
// LIFO posting to the FreeRTOS queue must succeed, see NOTE3
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(610, err == pdPASS);
QF_CRIT_EXIT();
}
//............................................................................
QEvt const *QActive::get_(void) noexcept {
QEvt const *e;
xQueueReceive(m_eQueue, (void *)&e, portMAX_DELAY);
QS_CRIT_STAT
QS_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_ACTIVE_GET, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool Id&ref Count
QS_EQC_PRE_(static_cast<QEQueueCtr>(FREERTOS_QUEUE_GET_FREE()));
QS_END_PRE_()
QS_CRIT_EXIT();
return e;
}
//============================================================================
// The "FromISR" QP APIs for the FreeRTOS port...
bool QActive::postFromISR(QEvt const * const e,
std::uint_fast16_t const margin,
void *par,
void const * const sender) noexcept
{
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
// find the number of free slots available in the queue
std::uint_fast16_t const nFree =
static_cast<std::uint_fast16_t>(FREERTOS_QUEUE_GET_FREE());
bool status;
if (margin == QF::NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_INCRIT(810); // must be able to post the event
}
}
else if (nFree > margin) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool Id&ref Count
QS_EQC_PRE_(nFree); // # free entries available
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolNum_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
BaseType_t err = xQueueSendToBackFromISR(m_eQueue,
static_cast<void const *>(&e),
static_cast<BaseType_t*>(par));
// posting to the FreeRTOS message queue must succeed
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
Q_ASSERT_INCRIT(820, err == pdPASS);
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
else {
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_ATTEMPT, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool Id&ref Count
QS_EQC_PRE_(nFree); // # free entries available
QS_EQC_PRE_(margin); // margin requested
QS_END_PRE_()
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
QF::gcFromISR(e); // recycle the event to avoid a leak
}
return status;
}
//............................................................................
void QActive::publishFromISR(QEvt const *e,
void *par,
void const * const sender) noexcept
{
QSignal const sig = e->sig;
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
//! @pre the published signal must be within the configured range
Q_REQUIRE_INCRIT(500, sig < QActive::maxPubSignal_);
Q_REQUIRE_INCRIT(502,
subscrList_[sig].m_set.verify_(&subscrList_[sig].m_set_dis));
QS_BEGIN_PRE_(QS_QF_PUBLISH, 0U)
QS_TIME_PRE_(); // the timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(sig); // the signal of the event
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_);// pool-Id & ref-Count
QS_END_PRE_()
// is it a dynamic event?
if (e->getPoolNum_() != 0U) {
// NOTE: The reference counter of a dynamic event is incremented to
// prevent premature recycling of the event while the multicasting
// is still in progress. At the end of the function, the garbage
// collector step (QF::gcFromISR()) decrements the reference counter
// and recycles the event if the counter drops to zero. This covers
// the case when the event was published without any subscribers.
QEvt_refCtr_inc_(e);
}
// make a local, modifiable copy of the subscriber list
QPSet subscrSet = QActive::subscrList_[sig].m_set;
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
if (subscrSet.notEmpty()) { // any subscribers?
// the highest-prio subscriber
std::uint_fast8_t p = subscrSet.findMax();
// no need to lock the scheduler in the ISR context
do { // loop over all subscribers
// the prio of the AO must be registered with the framework
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
Q_ASSERT_INCRIT(510, registry_[p] != nullptr);
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
// POST_FROM_ISR() asserts if the queue overflows
registry_[p]->POST_FROM_ISR(e, par, sender);
subscrSet.remove(p); // remove the handled subscriber
if (subscrSet.notEmpty()) { // still more subscribers?
p = subscrSet.findMax(); // the highest-prio subscriber
}
else {
p = 0U; // no more subscribers
}
} while (p != 0U);
// no need to unlock the scheduler in the ISR context
}
// The following garbage collection step decrements the reference counter
// and recycles the event if the counter drops to zero. This covers both
// cases when the event was published with or without any subscribers.
QF::gcFromISR(e);
}
//............................................................................
void QTimeEvt::tickFromISR(std::uint_fast8_t const tickRate,
void *par,
void const * const sender) noexcept
{
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
QTimeEvt *prev = &timeEvtHead_[tickRate];
QS_BEGIN_PRE_(QS_QF_TICK, 0U)
++prev->m_ctr;
QS_TEC_PRE_(prev->m_ctr); // tick ctr
QS_U8_PRE_(tickRate); // tick rate
QS_END_PRE_()
// scan the linked-list of time events at this rate...
for (;;) {
QTimeEvt *t = prev->m_next; // advance down the time evt. list
// end of the list?
if (t == nullptr) {
// any new time events armed since the last run?
if (timeEvtHead_[tickRate].m_act != nullptr) {
// sanity check
Q_ASSERT_INCRIT(610, prev != nullptr);
prev->m_next = QTimeEvt::timeEvtHead_[tickRate].toTimeEvt();
timeEvtHead_[tickRate].m_act = nullptr;
t = prev->m_next; // switch to the new list
}
else {
break; // all currently armed time evts. processed
}
}
// time event scheduled for removal?
if (t->m_ctr == 0U) {
prev->m_next = t->m_next;
// mark time event 't' as NOT linked
t->refCtr_ &= static_cast<std::uint8_t>(~TE_IS_LINKED);
// do NOT advance the prev pointer
// exit crit. section to reduce latency
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
else {
--t->m_ctr;
// is time evt about to expire?
if (t->m_ctr == 0U) {
QActive *act = t->toActive(); // temp. for volatile
// periodic time evt?
if (t->m_interval != 0U) {
t->m_ctr = t->m_interval; // rearm the time event
prev = t; // advance to this time event
}
// one-shot time event: automatically disarm
else {
prev->m_next = t->m_next;
// mark time event 't' as NOT linked
t->refCtr_ &= static_cast<std::uint8_t>(~TE_IS_LINKED);
// do NOT advance the prev pointer
QS_BEGIN_PRE_(QS_QF_TIMEEVT_AUTO_DISARM, act->m_prio)
QS_OBJ_PRE_(t); // this time event object
QS_OBJ_PRE_(act); // the target AO
QS_U8_PRE_(tickRate); // tick rate
QS_END_PRE_()
}
QS_BEGIN_PRE_(QS_QF_TIMEEVT_POST, act->m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(t); // the time event object
QS_SIG_PRE_(t->sig); // signal of time event
QS_OBJ_PRE_(act); // the target AO
QS_U8_PRE_(tickRate); // tick rate
QS_END_PRE_()
// exit critical section before posting
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
// asserts if the queue overflows
act->POST_FROM_ISR(t, par, sender);
}
else {
prev = t; // advance to this time event
// exit crit. section to reduce latency
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
}
// re-enter crit. section to continue
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
}
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
//............................................................................
QEvt *QF::newXfromISR_(std::uint_fast16_t const evtSize,
std::uint_fast16_t const margin,
enum_t const sig) noexcept
{
// find the pool index that fits the requested event size ...
std::uint_fast8_t idx;
for (idx = 0U; idx < priv_.maxPool_; ++idx) {
if (evtSize <= QF_EPOOL_EVENT_SIZE_(priv_.ePool_[idx])) {
break;
}
}
// cannot run out of registered pools
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
Q_REQUIRE_INCRIT(700, idx < priv_.maxPool_);
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
// get e -- platform-dependent
#ifdef Q_SPY
QEvt *e = static_cast<QEvt *>(
priv_.ePool_[idx].getFromISR(((margin != QF::NO_MARGIN)
? margin : 0U),
static_cast<std::uint_fast8_t>(QS_EP_ID) + idx + 1U));
#else
QEvt *e = static_cast<QEvt *>(
priv_.ePool_[idx].getFromISR(((margin != QF::NO_MARGIN)
? margin : 0U), 0U));
#endif
// was e allocated correctly?
if (e != nullptr) {
e->sig = static_cast<QSignal>(sig); // set the signal
e->refCtr_ = 0U;
e->evtTag_ = static_cast<std::uint8_t>(QEvt::MARKER | (idx + 1U));
#ifdef Q_SPY
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
QS_BEGIN_PRE_(QS_QF_NEW,
static_cast<uint_fast8_t>(QS_EP_ID) + idx + 1U)
QS_TIME_PRE_(); // timestamp
QS_EVS_PRE_(evtSize); // the size of the event
QS_SIG_PRE_(sig); // the signal of the event
QS_END_PRE_()
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
#endif // Q_SPY
}
else { // event cannot be allocated
// must tolerate bad alloc.
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
Q_ASSERT_INCRIT(720, margin != QF::NO_MARGIN);
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
#ifdef Q_SPY
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
QS_BEGIN_PRE_(QS_QF_NEW_ATTEMPT,
static_cast<uint_fast8_t>(QS_EP_ID) + idx + 1U)
QS_TIME_PRE_(); // timestamp
QS_EVS_PRE_(evtSize); // the size of the event
QS_SIG_PRE_(sig); // the signal of the event
QS_END_PRE_()
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
#endif // Q_SPY
}
return e; // can't be NULL if we can't tolerate bad allocation
}
//............................................................................
void QF::gcFromISR(QEvt const * const e) noexcept {
// is it a dynamic event?
if (e->getPoolNum_() != 0U) {
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
// isn't this the last ref?
if (e->refCtr_ > 1U) {
QEvt_refCtr_dec_(e); // decrement the ref counter
QS_BEGIN_PRE_(QS_QF_GC_ATTEMPT,
static_cast<uint_fast8_t>(e->getPoolNum_()))
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of the event
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_);//poolNum & refCtr
QS_END_PRE_()
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
// this is the last reference to this event, recycle it
else {
std::uint_fast8_t idx =
static_cast<std::uint_fast8_t>(e->getPoolNum_()) - 1U;
QS_BEGIN_PRE_(QS_QF_GC,
static_cast<uint_fast8_t>(e->getPoolNum_()))
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of the event
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_);//poolNum & refCtr
QS_END_PRE_()
// pool ID must be in range
Q_ASSERT_INCRIT(810, idx < priv_.maxPool_);
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
#ifdef Q_SPY
// cast 'const' away, which is OK because it's a pool event
priv_.ePool_[idx].putFromISR(QF_CONST_CAST_(QEvt*, e),
static_cast<uint_fast8_t>(QS_EP_ID) + e->getPoolNum_());
#else
priv_.ePool_[idx].putFromISR(QF_CONST_CAST_(QEvt*, e), 0U);
#endif
}
}
}
//............................................................................
void QMPool::putFromISR(void *block,
std::uint_fast8_t const qs_id) noexcept
{
#ifndef Q_SPY
Q_UNUSED_PAR(qs_id);
#endif
QFreeBlock * const fb = static_cast<QFreeBlock *>(block);
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
// precondition:
// - # free blocks cannot exceed the total # blocks and
// - the block pointer must be from this pool.
Q_REQUIRE_INCRIT(900, (m_nFree < m_nTot)
&& QF_PTR_RANGE_(fb, m_start, m_end));
fb->m_next = static_cast<QFreeBlock *>(m_free_head); // link into list
#ifndef Q_UNSAFE
fb->m_next_dis = static_cast<uintptr_t>(~Q_UINTPTR_CAST_(fb->m_next));
#endif
m_free_head = fb; // set as new head of the free list
++m_nFree; // one more free block in this pool
QS_BEGIN_PRE_(QS_QF_MPOOL_PUT, qs_id)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(this); // this memory pool
QS_MPC_PRE_(m_nFree); // the number of free blocks in the pool
QS_END_PRE_()
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
}
//............................................................................
void *QMPool::getFromISR(std::uint_fast16_t const margin,
std::uint_fast8_t const qs_id) noexcept
{
#ifndef Q_SPY
Q_UNUSED_PAR(qs_id);
#endif
UBaseType_t uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
// have more free blocks than the requested margin?
QFreeBlock *fb;
if (m_nFree > static_cast<QMPoolCtr>(margin)) {
fb = static_cast<QFreeBlock *>(m_free_head); // get a free block
// the pool has some free blocks, so a free block must be available
Q_ASSERT_INCRIT(900, fb != nullptr);
QFreeBlock * const fb_next = fb->m_next; // fast temporary to avoid UB
// the free block must have integrity (duplicate inverse storage)
Q_ASSERT_INCRIT(902, Q_UINTPTR_CAST_(fb_next)
== static_cast<uintptr_t>(~fb->m_next_dis));
// is the pool becoming empty?
--m_nFree; // one less free block
if (m_nFree == 0U) {
// pool is becoming empty, so the next free block must be NULL
Q_ASSERT_INCRIT(920, fb_next == nullptr);
m_nMin = 0U; // remember that the pool got empty
}
else {
// invariant
// The pool is not empty, so the next free-block pointer,
// so the next free block must be in range.
//
// NOTE: The next free block pointer can fall out of range
// when the client code writes past the memory block, thus
// corrupting the next block.
Q_ASSERT_INCRIT(930, QF_PTR_RANGE_(fb_next, m_start, m_end));
// is the number of free blocks the new minimum so far?
if (m_nMin > m_nFree) {
m_nMin = m_nFree; // remember the new minimum
}
}
m_free_head = fb_next; // set the head to the next free block
QS_BEGIN_PRE_(QS_QF_MPOOL_GET, qs_id)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(this); // this memory pool
QS_MPC_PRE_(m_nFree); // # free blocks in the pool
QS_MPC_PRE_(m_nMin); // min # free blocks ever in the pool
QS_END_PRE_()
}
else { // don't have enough free blocks at this point
fb = nullptr;
QS_BEGIN_PRE_(QS_QF_MPOOL_GET_ATTEMPT, qs_id)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(this); // this memory pool
QS_MPC_PRE_(m_nFree); // # free blocks in the pool
QS_MPC_PRE_(margin); // the requested margin
QS_END_PRE_()
}
portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedInterruptStatus);
return fb; // return the block or NULL pointer to the caller
}
} // namespace QP
//============================================================================
// NOTE3:
// The event posting to FreeRTOS message queue occurs OUTSIDE critical section,
// which means that the remaining margin of available slots in the queue
// cannot be guaranteed. The problem is that interrupts and other tasks can
// preempt the event posting after checking the margin, but before actually
// posting the event to the queue.
//