qpcpp/zephyr/qf_port.cpp
2024-06-12 16:30:04 -04:00

316 lines
11 KiB
C++

//============================================================================
// QP/C++ Real-Time Embedded Framework (RTEF)
// Copyright (C) 2005 Quantum Leaps, LLC. All rights reserved.
//
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-QL-commercial
//
// This software is dual-licensed under the terms of the open source GNU
// General Public License version 3 (or any later version), or alternatively,
// under the terms of one of the closed source Quantum Leaps commercial
// licenses.
//
// The terms of the open source GNU General Public License version 3
// can be found at: <www.gnu.org/licenses/gpl-3.0>
//
// The terms of the closed source Quantum Leaps commercial licenses
// can be found at: <www.state-machine.com/licensing>
//
// Redistributions in source code must retain this top-level comment block.
// Plagiarizing this software to sidestep the license obligations is illegal.
//
// Contact information:
// <www.state-machine.com>
// <info@state-machine.com>
//============================================================================
//! @date Last updated on: 2024-06-11
//! @version Last updated for: @ref qpc_7_4_0
//!
//! @file
//! @brief QF/C++ port to Zephyr RTOS kernel, all supported compilers
#define QP_IMPL // this is QP implementation
#include "qp_port.hpp" // QP port
#include "qp_pkg.hpp" // QP package-scope interface
#include "qsafe.h" // QP Functional Safety (FuSa) Subsystem
#ifdef Q_SPY // QS software tracing enabled?
#include "qs_port.hpp" // QS port
#include "qs_pkg.hpp" // QS package-scope internal interface
#else
#include "qs_dummy.hpp" // disable the QS software tracing
#endif // Q_SPY
namespace { // unnamed namespace
Q_THIS_MODULE("qf_port");
//............................................................................
static void thread_entry(void *p1, void *p2, void *p3) { // Zephyr signature
Q_UNUSED_PAR(p2);
Q_UNUSED_PAR(p3);
// run the thread routine (typically endless loop)
QP::QActive::evtLoop_(reinterpret_cast<QP::QActive *>(p1));
}
} // unnamed namespace
// namespace QP ==============================================================
namespace QP {
namespace QF {
// Zephyr spinlock for QF critical section
struct k_spinlock spinlock;
//............................................................................
void init() {
spinlock = (struct k_spinlock){};
}
//............................................................................
int_t run() {
onStartup();
#ifdef Q_SPY
#if (CONFIG_NUM_PREEMPT_PRIORITIES > 0)
// lower the priority of the main thread to the level of idle thread
k_thread_priority_set(k_current_get(),
CONFIG_NUM_PREEMPT_PRIORITIES - 1);
#endif
// produce the QS_QF_RUN trace record
QS_CRIT_STAT
QS_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_RUN, 0U)
QS_END_PRE_()
QS_CRIT_EXIT();
// perform QS work...
while (true) {
QS::rxParse(); // parse any QS-RX bytes
QS::doOutput(); // perform the QS-TX output
}
#else
return 0; // return from the main Zephyr thread
#endif
}
//............................................................................
void stop(void) {
onCleanup(); // cleanup callback
}
} // namespace QF
// thread for active objects -------------------------------------------------
void QActive::evtLoop_(QActive *act) {
// event-loop
for (;;) { // for-ever
QEvt const *e = act->get_(); // wait for event
// dispatch event (virtual call)
act->dispatch(e, act->m_prio);
QF::gc(e); // check if the event is garbage, and collect it if so
}
}
//............................................................................
//
// In the Zephyr port the generic function QActive::setAttr() is used to
// set the options for the Zephyr thread (attr1) and thread name (attr2).
// QActive::setAttr() needs to be called *before* QActive::start() for the
// given active object.
//
// In this Zephyr port the attributes will be used as follows
// (see also QActive::start()):
// - attr1 - will be used for thread options in k_thread_create()
// - attr2 - will be used for thread name in k_thread_name_set()
//
void QActive::setAttr(std::uint32_t attr1, void const *attr2) {
m_thread.base.order_key = attr1;
m_thread.init_data = const_cast<void *>(attr2);
}
//............................................................................
void QActive::start(QPrioSpec const prioSpec,
QEvt const * * const qSto, std::uint_fast16_t const qLen,
void * const stkSto, std::uint_fast16_t const stkSize,
void const * const par)
{
m_prio = static_cast<std::uint8_t>(prioSpec & 0xFFU); // QF-priority
m_pthre = 0U; // preemption-threshold (not used for AO registration)
register_(); // make QF aware of this active object
// initialize the Zephyr message queue
k_msgq_init(&m_eQueue, reinterpret_cast<char *>(qSto),
sizeof(QEvt *), static_cast<uint32_t>(qLen));
// top-most initial tran. (virtual call)
init(par, m_prio);
QS_FLUSH(); // flush the trace buffer to the host
// The Zephyr priority of the AO thread can be specified in two ways:
//
// 1. Implictily based on the AO's priority (Zephyr uses the reverse
// priority numbering scheme than QP). This option is chosen, when
// the higher-byte of the prioSpec parameter is set to zero.
//
// 2. Explicitly as the higher-byte of the prioSpec parameter.
// This option is chosen when the prioSpec parameter is not-zero.
// For example, Q_PRIO(10U, -1U) will explicitly specify AO priority
// as 10 and Zephyr priority as -1.
//
// NOTE: The explicit Zephyr priority is NOT sanity-checked,
// so it is the responsibility of the application to ensure that
// it is consistent with the AO's priority. An example of
// inconsistent setting would be assigning Zephyr priorities that
// would result in a different relative priritization of AO's threads
// than indicated by the AO priorities assigned.
//
int zephyr_prio = (int)((int16_t)prioSpec >> 8);
if (zephyr_prio == 0) {
zephyr_prio = (int)QF_MAX_ACTIVE - (int)m_prio;
}
// extract data temporarily saved in m_thread by QActive::setAttr()
std::uint32_t opt = m_thread.base.order_key;
#ifdef CONFIG_THREAD_NAME
char const *name = static_cast<char const *>(m_thread.init_data);
#endif
// clear the Zephyr thread structure before creating the thread
m_thread = (struct k_thread){};
// create a Zephyr thread for the AO...
k_thread_create(&m_thread,
static_cast<k_thread_stack_t *>(stkSto),
static_cast<size_t>(stkSize),
&thread_entry,
static_cast<void *>(this), // p1
nullptr, // p2
nullptr, // p3
zephyr_prio,// Zephyr priority
opt, // thread options
K_NO_WAIT); // start immediately
#ifdef CONFIG_THREAD_NAME
// set the Zephyr thread name, if initialized, or the default name "AO"
k_thread_name_set(&m_thread, (name != nullptr) ? name : "AO");
#endif
}
//............................................................................
bool QActive::post_(QEvt const * const e, std::uint_fast16_t const margin,
void const * const sender) noexcept
{
QF_CRIT_STAT
QF_CRIT_ENTRY();
std::uint_fast16_t nFree =
static_cast<std::uint_fast16_t>(k_msgq_num_free_get(&m_eQueue));
bool status;
if (margin == QF::NO_MARGIN) {
if (nFree > 0U) {
status = true; // can post
}
else {
status = false; // cannot post
Q_ERROR_INCRIT(510); // must be able to post the event
}
}
else if (nFree > static_cast<QEQueueCtr>(margin)) {
status = true; // can post
}
else {
status = false; // cannot post
}
if (status) { // can post the event?
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_);// pool-Id & ref-Count
QS_EQC_PRE_(nFree); // # free entries available
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolNum_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
int err = k_msgq_put(&m_eQueue, static_cast<void const *>(&e), K_NO_WAIT);
// posting to the Zephyr message queue must succeed, see NOTE1
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(520, err == 0);
}
else {
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_ATTEMPT, m_prio)
QS_TIME_PRE_(); // timestamp
QS_OBJ_PRE_(sender); // the sender object
QS_SIG_PRE_(e->sig); // the signal of the event
QS_OBJ_PRE_(this); // this active object (recipient)
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_);// pool-Id & ref-Count
QS_EQC_PRE_(nFree); // # free entries available
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
}
QF_CRIT_EXIT();
return status;
}
//............................................................................
void QActive::postLIFO(QEvt const * const e) noexcept {
QF_CRIT_STAT
QF_CRIT_ENTRY();
QS_BEGIN_PRE_(QS_QF_ACTIVE_POST_LIFO, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool-Id & ref-Count
QS_EQC_PRE_(k_msgq_num_free_get(&m_eQueue)); // # free entries
QS_EQC_PRE_(0U); // min # free entries (unknown)
QS_END_PRE_()
if (e->getPoolNum_() != 0U) { // is it a pool event?
QEvt_refCtr_inc_(e); // increment the reference counter
}
QF_CRIT_EXIT();
// NOTE: Zephyr message queue does not currently support LIFO posting
// so normal FIFO posting is used instead.
int err = k_msgq_put(&m_eQueue, static_cast<void const *>(&e), K_NO_WAIT);
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(710, err == 0);
QF_CRIT_EXIT();
}
//............................................................................
QEvt const *QActive::get_(void) noexcept {
// wait for an event (forever)
QEvt const *e;
int err = k_msgq_get(&m_eQueue, static_cast<void *>(&e), K_FOREVER);
// queue-get must succeed
QF_CRIT_STAT
QF_CRIT_ENTRY();
Q_ASSERT_INCRIT(810, err == 0);
QS_BEGIN_PRE_(QS_QF_ACTIVE_GET, m_prio)
QS_TIME_PRE_(); // timestamp
QS_SIG_PRE_(e->sig); // the signal of this event
QS_OBJ_PRE_(this); // this active object
QS_2U8_PRE_(e->getPoolNum_(), e->refCtr_); // pool-Id & ref-Count
QS_EQC_PRE_(k_msgq_num_free_get(&m_eQueue)); // # free entries
QS_END_PRE_()
QF_CRIT_EXIT();
return e;
}
} // namespace QP