2019-03-28 11:59:31 -04:00

558 lines
21 KiB
C++

///***************************************************************************
// Product: DPP example, EK-TM4C123GXL board, FreeRTOS kernel
// Last Updated for Version: 6.5.0
// Date of the Last Update: 2019-03-22
//
// Q u a n t u m L e a P s
// ------------------------
// Modern Embedded Software
//
// Copyright (C) 2005-2019 Quantum Leaps, LLC. All rights reserved.
//
// This program is open source software: you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Alternatively, this program may be distributed and modified under the
// terms of Quantum Leaps commercial licenses, which expressly supersede
// the GNU General Public License and are specifically designed for
// licensees interested in retaining the proprietary status of their code.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Contact information:
// https://www.state-machine.com
// mailto:info@state-machine.com
//****************************************************************************
#include "qpcpp.h"
#include "dpp.h"
#include "bsp.h"
#include "TM4C123GH6PM.h" // the device specific header (TI)
#include "rom.h" // the built-in ROM functions (TI)
#include "sysctl.h" // system control driver (TI)
#include "gpio.h" // GPIO driver (TI)
// add other drivers if necessary...
Q_DEFINE_THIS_FILE // define the name of this file for assertions
// namespace DPP *************************************************************
namespace DPP {
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
enum KernelUnawareISRs { // see NOTE1
UART0_PRIO,
// ...
MAX_KERNEL_UNAWARE_CMSIS_PRI // keep always last
};
// "kernel-unaware" interrupts can't overlap "kernel-aware" interrupts
Q_ASSERT_COMPILE(
MAX_KERNEL_UNAWARE_CMSIS_PRI
<= (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)));
enum KernelAwareISRs {
SYSTICK_PRIO = (configMAX_SYSCALL_INTERRUPT_PRIORITY >> (8-__NVIC_PRIO_BITS)),
GPIOA_PRIO,
// ...
MAX_KERNEL_AWARE_CMSIS_PRI // keep always last
};
// "kernel-aware" interrupts should not overlap the PendSV priority
Q_ASSERT_COMPILE(MAX_KERNEL_AWARE_CMSIS_PRI <= (0xFF >>(8-__NVIC_PRIO_BITS)));
// LEDs and Switches of the EK-TM4C123GXL board ..............................
#define LED_RED (1U << 1)
#define LED_GREEN (1U << 3)
#define LED_BLUE (1U << 2)
#define BTN_SW1 (1U << 4)
#define BTN_SW2 (1U << 0)
// Local-scope objects -------------------------------------------------------
static uint32_t l_rnd; // random seed
#ifdef Q_SPY
QP::QSTimeCtr QS_tickTime_;
QP::QSTimeCtr QS_tickPeriod_;
// QS source IDs
static uint8_t const l_TickHook = static_cast<uint8_t>(0);
static uint8_t const l_GPIOPortA_IRQHandler = static_cast<uint8_t>(0);
#define UART_BAUD_RATE 115200U
#define UART_FR_TXFE (1U << 7)
#define UART_FR_RXFE (1U << 4)
#define UART_TXFIFO_DEPTH 16U
enum AppRecords { // application-specific trace records
PHILO_STAT = QP::QS_USER,
PAUSED_STAT,
COMMAND_STAT
};
#endif
extern "C" {
// ISRs used in this project =================================================
// NOTE: only the "FromISR" API variants are allowed in the ISRs!
void GPIOPortA_IRQHandler(void); // prototype
void GPIOPortA_IRQHandler(void) {
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// for testing...
AO_Table->POST_FROM_ISR(
Q_NEW_FROM_ISR(QP::QEvt, DPP::MAX_PUB_SIG),
&xHigherPriorityTaskWoken,
&l_GPIOPortA_IRQHandler);
// the usual end of FreeRTOS ISR...
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
//............................................................................
#ifdef Q_SPY
// ISR for receiving bytes from the QSPY Back-End
// NOTE: This ISR is "kernel-unaware" meaning that it does not interact with
// the FreeRTOS or QP and is not disabled. Such ISRs don't need to call
// portEND_SWITCHING_ISR(() at the end, but they also cannot call any
// FreeRTOS or QP APIs.
//
void UART0_IRQHandler(void); // prototype
void UART0_IRQHandler(void) {
uint32_t status = UART0->RIS; // get the raw interrupt status
UART0->ICR = status; // clear the asserted interrupts
while ((UART0->FR & UART_FR_RXFE) == 0) { // while RX FIFO NOT empty
uint32_t b = UART0->DR;
QP::QS::rxPut(b);
}
}
#endif
// Application hooks used in this project ====================================
// NOTE: only the "FromISR" API variants are allowed in vApplicationTickHook
void vApplicationTickHook(void) {
// state of the button debouncing, see below
static struct ButtonsDebouncing {
uint32_t depressed;
uint32_t previous;
} buttons = { ~0U, ~0U };
uint32_t current;
uint32_t tmp;
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// process time events for rate 0
QP::QF::TICK_X_FROM_ISR(0U, &xHigherPriorityTaskWoken, &l_TickHook);
#ifdef Q_SPY
{
tmp = SysTick->CTRL; // clear SysTick_CTRL_COUNTFLAG
QS_tickTime_ += QS_tickPeriod_; // account for the clock rollover
}
#endif
// Perform the debouncing of buttons. The algorithm for debouncing
// adapted from the book "Embedded Systems Dictionary" by Jack Ganssle
// and Michael Barr, page 71.
//
current = ~GPIOF->DATA_Bits[BTN_SW1 | BTN_SW2]; // read SW1 and SW2
tmp = buttons.depressed; // save the debounced depressed buttons
buttons.depressed |= (buttons.previous & current); // set depressed
buttons.depressed &= (buttons.previous | current); // clear released
buttons.previous = current; // update the history
tmp ^= buttons.depressed; // changed debounced depressed
if ((tmp & BTN_SW1) != 0U) { // debounced SW1 state changed?
if ((buttons.depressed & BTN_SW1) != 0U) { // is SW1 depressed?
// demonstrate the ISR APIs: PUBLISH_FROM_ISR and Q_NEW_FROM_ISR
QP::QF::PUBLISH_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::PAUSE_SIG),
&xHigherPriorityTaskWoken, &l_TickHook);
}
else { // the button is released
// demonstrate the ISR APIs: POST_FROM_ISR and Q_NEW_FROM_ISR
AO_Table->POST_FROM_ISR(Q_NEW_FROM_ISR(QP::QEvt, DPP::SERVE_SIG),
&xHigherPriorityTaskWoken, &l_TickHook);
}
}
// notify FreeRTOS to perform context switch from ISR, if needed
portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}
//............................................................................
void vApplicationIdleHook(void) {
// toggle the User LED on and then off, see NOTE01
QF_INT_DISABLE();
GPIOF->DATA_Bits[LED_BLUE] = 0xFFU; // turn the Blue LED on
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the Blue LED off
QF_INT_ENABLE();
// Some flating point code is to exercise the VFP...
float x = 1.73205F;
x = x * 1.73205F;
#ifdef Q_SPY
QP::QS::rxParse(); // parse all the received bytes
if ((UART0->FR & UART_FR_TXFE) != 0U) { // TX done?
uint16_t fifo = UART_TXFIFO_DEPTH; // max bytes we can accept
uint8_t const *block;
QF_INT_DISABLE();
block = QP::QS::getBlock(&fifo); // try to get next block to transmit
QF_INT_ENABLE();
while (fifo-- != 0U) { // any bytes in the block?
UART0->DR = *block++; // put into the FIFO
}
}
#elif defined NDEBUG
// Put the CPU and peripherals to the low-power mode.
// you might need to customize the clock management for your application,
// see the datasheet for your particular Cortex-M3 MCU.
//
__WFI(); // Wait-For-Interrupt
#endif
}
//............................................................................
void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) {
(void)xTask;
(void)pcTaskName;
Q_ERROR();
}
//............................................................................
// configSUPPORT_STATIC_ALLOCATION is set to 1, so the application must
// provide an implementation of vApplicationGetIdleTaskMemory() to provide
// the memory that is used by the Idle task.
//
void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer,
StackType_t **ppxIdleTaskStackBuffer,
uint32_t *pulIdleTaskStackSize )
{
// If the buffers to be provided to the Idle task are declared inside
// this function then they must be declared static - otherwise they will
// be allocated on the stack and so not exists after this function exits.
//
static StaticTask_t xIdleTaskTCB;
static StackType_t uxIdleTaskStack[ configMINIMAL_STACK_SIZE ];
// Pass out a pointer to the StaticTask_t structure in which the
// Idle task's state will be stored.
//
*ppxIdleTaskTCBBuffer = &xIdleTaskTCB;
// Pass out the array that will be used as the Idle task's stack. */
*ppxIdleTaskStackBuffer = uxIdleTaskStack;
// Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
// Note that, as the array is necessarily of type StackType_t,
// configMINIMAL_STACK_SIZE is specified in words, not bytes.
//
*pulIdleTaskStackSize = Q_DIM(uxIdleTaskStack);
}
} // extern "C"
// BSP functions =============================================================
void BSP::init(void) {
// NOTE: SystemInit() has been already called from the startup code
// but SystemCoreClock needs to be updated
SystemCoreClockUpdate();
// NOTE: The VFP (hardware Floating Point) unit is configured by FreeRTOS
// enable clock for to the peripherals used by this application...
SYSCTL->RCGCGPIO |= (1U << 5); // enable Run mode for GPIOF
// configure the LEDs and push buttons
GPIOF->DIR |= (LED_RED | LED_GREEN | LED_BLUE); // set as output
GPIOF->DEN |= (LED_RED | LED_GREEN | LED_BLUE); // digital enable
GPIOF->DATA_Bits[LED_RED] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_GREEN] = 0U; // turn the LED off
GPIOF->DATA_Bits[LED_BLUE] = 0U; // turn the LED off
// configure the User Switches
GPIOF->DIR &= ~(BTN_SW1 | BTN_SW2); // set direction: input
ROM_GPIOPadConfigSet(GPIOF_BASE, (BTN_SW1 | BTN_SW2),
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);
BSP::randomSeed(1234U);
// initialize the QS software tracing...
if (!QS_INIT((void *)0)) {
Q_ERROR();
}
QS_OBJ_DICTIONARY(&l_TickHook);
QS_OBJ_DICTIONARY(&l_GPIOPortA_IRQHandler);
QS_USR_DICTIONARY(PHILO_STAT);
QS_USR_DICTIONARY(PAUSED_STAT);
QS_USR_DICTIONARY(COMMAND_STAT);
}
//............................................................................
void BSP::displayPhilStat(uint8_t n, char const *stat) {
GPIOF->DATA_Bits[LED_GREEN] =
((stat[0] == 'e') // Is Philo[n] eating?
? 0xFFU // turn the LED1 on
: 0U); // turn the LED1 off
QS_BEGIN(DPP::PHILO_STAT, AO_Philo[n]) // application-specific record begin
QS_U8(1, n); // Philosopher number
QS_STR(stat); // Philosopher status
QS_END()
}
//............................................................................
void BSP::displayPaused(uint8_t const paused) {
GPIOF->DATA_Bits[LED_GREEN] = ((paused != 0U) ? 0xFFU : 0U);
// application-specific trace record
QS_BEGIN(PAUSED_STAT, AO_Table)
QS_U8(1, paused); // Paused status
QS_END()
}
//............................................................................
void BSP::ledOn(void) {
GPIOF->DATA_Bits[LED_GREEN] = 0xFFU;
}
//............................................................................
void BSP::ledOff(void) {
GPIOF->DATA_Bits[LED_GREEN] = 0U;
}
//............................................................................
uint32_t BSP::random(void) { // a very cheap pseudo-random-number generator
// Some flating point code is to exercise the VFP...
float volatile x = 3.1415926F;
x = x + 2.7182818F;
vTaskSuspendAll(); // lock FreeRTOS scheduler
// "Super-Duper" Linear Congruential Generator (LCG)
// LCG(2^32, 3*7*11*13*23, 0, seed)
//
uint32_t rnd = l_rnd * (3U*7U*11U*13U*23U);
l_rnd = rnd; // set for the next time
xTaskResumeAll(); // unlock the FreeRTOS scheduler
return (rnd >> 8);
}
//............................................................................
void BSP::randomSeed(uint32_t seed) {
l_rnd = seed;
}
//............................................................................
void BSP::terminate(int16_t result) {
(void)result;
}
} // namespace DPP
// namespace QP **************************************************************
namespace QP {
// QF callbacks ==============================================================
void QF::onStartup(void) {
// set up the SysTick timer to fire at BSP::TICKS_PER_SEC rate
//SysTick_Config(SystemCoreClock / BSP_TICKS_PER_SEC); // done in FreeRTOS
// assign all priority bits for preemption-prio. and none to sub-prio.
NVIC_SetPriorityGrouping(0U);
// set priorities of ALL ISRs used in the system, see NOTE00
//
// !!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Assign a priority to EVERY ISR explicitly by calling NVIC_SetPriority().
// DO NOT LEAVE THE ISR PRIORITIES AT THE DEFAULT VALUE!
//
NVIC_SetPriority(UART0_IRQn, DPP::UART0_PRIO);
NVIC_SetPriority(SysTick_IRQn, DPP::SYSTICK_PRIO);
NVIC_SetPriority(GPIOA_IRQn, DPP::GPIOA_PRIO);
// ...
// enable IRQs...
NVIC_EnableIRQ(GPIOA_IRQn);
#ifdef Q_SPY
NVIC_EnableIRQ(UART0_IRQn); // UART interrupt used for QS-RX
#endif
}
//............................................................................
void QF::onCleanup(void) {
}
//............................................................................
extern "C" void Q_onAssert(char const *module, int loc) {
//
// NOTE: add here your application-specific error handling
//
(void)module;
(void)loc;
QS_ASSERTION(module, loc, static_cast<uint32_t>(10000U));
#ifndef NDEBUG
// for debugging, hang on in an endless loop toggling the RED LED...
while (GPIOF->DATA_Bits[BTN_SW1] != 0) {
GPIOF->DATA = LED_RED;
GPIOF->DATA = 0U;
}
#endif
NVIC_SystemReset();
}
// QS callbacks ==============================================================
#ifdef Q_SPY
//............................................................................
bool QS::onStartup(void const *arg) {
static uint8_t qsTxBuf[2*1024]; // buffer for QS transmit channel
static uint8_t qsRxBuf[100]; // buffer for QS receive channel
uint32_t tmp;
initBuf(qsTxBuf, sizeof(qsTxBuf));
rxInitBuf(qsRxBuf, sizeof(qsRxBuf));
// enable clock for UART0 and GPIOA (used by UART0 pins)
SYSCTL->RCGCUART |= (1U << 0); // enable Run mode for UART0
SYSCTL->RCGCGPIO |= (1U << 0); // enable Run mode for GPIOA
// configure UART0 pins for UART operation
tmp = (1U << 0) | (1U << 1);
GPIOA->DIR &= ~tmp;
GPIOA->SLR &= ~tmp;
GPIOA->ODR &= ~tmp;
GPIOA->PUR &= ~tmp;
GPIOA->PDR &= ~tmp;
GPIOA->AMSEL &= ~tmp; // disable analog function on the pins
GPIOA->AFSEL |= tmp; // enable ALT function on the pins
GPIOA->DEN |= tmp; // enable digital I/O on the pins
GPIOA->PCTL &= ~0x00U;
GPIOA->PCTL |= 0x11U;
// configure the UART for the desired baud rate, 8-N-1 operation
tmp = (((SystemCoreClock * 8U) / UART_BAUD_RATE) + 1U) / 2U;
UART0->IBRD = tmp / 64U;
UART0->FBRD = tmp % 64U;
UART0->LCRH = (0x3U << 5); // configure 8-N-1 operation
UART0->LCRH |= (0x1U << 4); // enable FIFOs
UART0->CTL = (1U << 0) // UART enable
| (1U << 8) // UART TX enable
| (1U << 9); // UART RX enable
// configure UART interrupts (for the RX channel)
UART0->IM |= (1U << 4) | (1U << 6); // enable RX and RX-TO interrupt
UART0->IFLS |= (0x2U << 2); // interrupt on RX FIFO half-full
// NOTE: do not enable the UART0 interrupt yet. Wait till QF_onStartup()
DPP::QS_tickPeriod_ = SystemCoreClock / DPP::BSP::TICKS_PER_SEC;
DPP::QS_tickTime_ = DPP::QS_tickPeriod_; // to start the timestamp at zero
// setup the QS filters... */
QS_FILTER_ON(QS_SM_RECORDS); // state machine records */
QS_FILTER_ON(QS_UA_RECORDS); // all usedr records */
//QS_FILTER_ON(QS_MUTEX_LOCK);
//QS_FILTER_ON(QS_MUTEX_UNLOCK);
return true; // return success
}
//............................................................................
void QS::onCleanup(void) {
}
//............................................................................
QSTimeCtr QS::onGetTime(void) { // NOTE: invoked with interrupts DISABLED
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) == 0) { // not set?
return DPP::QS_tickTime_ - static_cast<QSTimeCtr>(SysTick->VAL);
}
else { // the rollover occured, but the SysTick_ISR did not run yet
return DPP::QS_tickTime_ + DPP::QS_tickPeriod_
- static_cast<QSTimeCtr>(SysTick->VAL);
}
}
//............................................................................
void QS::onFlush(void) {
uint16_t fifo = UART_TXFIFO_DEPTH; // Tx FIFO depth
uint8_t const *block;
while ((block = getBlock(&fifo)) != static_cast<uint8_t *>(0)) {
// busy-wait until TX FIFO empty
while ((UART0->FR & UART_FR_TXFE) == 0U) {
}
while (fifo-- != 0U) { // any bytes in the block?
UART0->DR = *block++; // put into the TX FIFO
}
fifo = UART_TXFIFO_DEPTH; // re-load the Tx FIFO depth
}
}
//............................................................................
//! callback function to reset the target (to be implemented in the BSP)
void QS::onReset(void) {
NVIC_SystemReset();
}
//............................................................................
//! callback function to execute a user command (to be implemented in BSP)
extern "C" void assert_failed(char const *module, int loc);
void QS::onCommand(uint8_t cmdId,
uint32_t param1, uint32_t param2, uint32_t param3)
{
(void)cmdId;
(void)param1;
(void)param2;
(void)param3;
// application-specific record
QS_BEGIN(DPP::COMMAND_STAT, reinterpret_cast<void *>(1))
QS_U8(2, cmdId);
QS_U32(8, param1);
QS_U32(8, param2);
QS_U32(8, param3);
QS_END()
if (cmdId == 10U) {
Q_ERROR(); // for testing of assertion failure
}
else if (cmdId == 11U) {
assert_failed("QS_onCommand", 123);
}
}
#endif // Q_SPY
//----------------------------------------------------------------------------
} // namespace QP
//****************************************************************************
// NOTE1:
// The QF_AWARE_ISR_CMSIS_PRI constant from the QF port specifies the highest
// ISR priority that is disabled by the QF framework. The value is suitable
// for the NVIC_SetPriority() CMSIS function.
//
// Only ISRs prioritized at or below the
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY level (i.e.,
// with the numerical values of priorities equal or higher than
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are allowed to call any
// QP/FreeRTOS services. These ISRs are "kernel-aware".
//
// Conversely, any ISRs prioritized above the
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY priority level (i.e., with
// the numerical values of priorities less than
// configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY) are never disabled and are
// not aware of the kernel. Such "kernel-unaware" ISRs cannot call any
// QP/FreeRTOS services. The only mechanism by which a "kernel-unaware" ISR
// can communicate with the QF framework is by triggering a "kernel-aware"
// ISR, which can post/publish events.
//
// For more information, see article "Running the RTOS on a ARM Cortex-M Core"
// http://www.freertos.org/RTOS-Cortex-M3-M4.html
//
// NOTE2:
// The User LED is used to visualize the idle loop activity. The brightness
// of the LED is proportional to the frequency of invcations of the idle loop.
// Please note that the LED is toggled with interrupts locked, so no interrupt
// execution time contributes to the brightness of the User LED.
//