Update LorenzAttractor_ESP32.ino

This commit is contained in:
Alex Spataru 2024-12-03 02:55:58 -05:00 committed by GitHub
parent 486e214c9c
commit 13f24f018a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -6,7 +6,7 @@
// This program is specifically designed for the ESP32 microcontroller and simulates
// the Lorenz system using fixed-point arithmetic. The Lorenz system is a set of
// three chaotic differential equations, and the program transmits the generated
// data (x, y, z) over the serial port. The output is ideal for visualizing the
// data (x, y, z) over the serial port. The output is ideal for visualizing the
// Lorenz attractor in real-time using tools like Serial Studio.
//
// Lorenz System Parameters:
@ -43,31 +43,37 @@
#include <Arduino.h>
// Parameters for the Lorenz system (scaled by 1000 for fixed-point arithmetic)
const int32_t sigma = 10000; // σ: 10.0 scaled by 1000
const int32_t rho = 28000; // ρ: 28.0 scaled by 1000
const int32_t beta = 2666; // β: 8/3 scaled by 1000
// Initial conditions (scaled by 1000)
int32_t x = 100; // Initial X value (0.1 scaled by 1000)
int32_t y = 0; // Initial Y value
int32_t z = 0; // Initial Z value
// Time step (scaled by 1000)
const int32_t dt = 10; // 0.01 scaled by 1000
// Queue for asynchronous data transmission
QueueHandle_t dataQueue;
QueueHandle_t DATA_QUEUE;
///
/// Task to calculate the Lorenz system state
///
void simulationTask(void *param) {
// Parameters for the Lorenz system (scaled by 1000 for fixed-point arithmetic)
const int32_t sigma = 10000; // σ: 10.0 scaled by 1000
const int32_t rho = 28000; // ρ: 28.0 scaled by 1000
const int32_t beta = 2666; // β: 8/3 scaled by 1000
// Initial conditions (scaled by 1000)
int32_t x = 100;
int32_t y = 0;
int32_t z = 0;
// Initialize derivatives
int32_t dx = 0;
int32_t dy = 0;
int32_t dz = 0;
// Time step (scaled by 1000)
const int32_t dt = 10;
// Task loop
while (true) {
// Calculate the derivatives (scaled by 1000)
int32_t dx = ((sigma * (y - x)) / 1000) * dt / 1000;
int32_t dy = (((x * (rho - z)) / 1000 - y) * dt) / 1000;
int32_t dz = (((x * y) / 1000 - (beta * z) / 1000) * dt) / 1000;
dx = ((sigma * (y - x)) / 1000) * dt / 1000;
dy = (((x * (rho - z)) / 1000 - y) * dt) / 1000;
dz = (((x * y) / 1000 - (beta * z) / 1000) * dt) / 1000;
// Integrate the derivatives to update the system's state
x += dx;
@ -75,8 +81,8 @@ void simulationTask(void *param) {
z += dz;
// Send data to the queue
int32_t data[3] = {x, y, z};
xQueueSend(dataQueue, &data, portMAX_DELAY);
int32_t data[3] = { x, y, z };
xQueueSend(DATA_QUEUE, &data, portMAX_DELAY);
// Maintain consistent time step
vTaskDelay(pdMS_TO_TICKS(dt));
@ -89,7 +95,7 @@ void simulationTask(void *param) {
void serialTask(void *param) {
while (true) {
int32_t data[3];
if (xQueueReceive(dataQueue, &data, portMAX_DELAY)) {
if (xQueueReceive(DATA_QUEUE, &data, portMAX_DELAY)) {
Serial.print(data[0] / 1000.0, 6);
Serial.print(",");
Serial.print(data[1] / 1000.0, 6);
@ -105,10 +111,11 @@ void serialTask(void *param) {
void setup() {
// Initialize Serial communication
Serial.begin(115200);
while (!Serial);
while (!Serial)
;
// Create a queue to hold Lorenz system data
dataQueue = xQueueCreate(10, sizeof(int32_t[3]));
DATA_QUEUE = xQueueCreate(10, sizeof(int32_t[3]));
// Create tasks for simulation and data transmission
xTaskCreate(simulationTask, "SimulationTask", 4096, NULL, 1, NULL);