mirror of
https://github.com/Serial-Studio/Serial-Studio.git
synced 2025-01-15 05:22:53 +08:00
Create LorenzAttractor_ESP32.ino
This commit is contained in:
parent
796b844c4b
commit
eb54ff3e39
127
examples/LorenzAttractor/LorenzAttractor_ESP32.ino
Normal file
127
examples/LorenzAttractor/LorenzAttractor_ESP32.ino
Normal file
@ -0,0 +1,127 @@
|
||||
//
|
||||
// Lorenz Attractor Data Generator (Fixed-Point Arithmetic)
|
||||
//
|
||||
// Author: Alex Spataru
|
||||
//
|
||||
// This program is specifically designed for the ESP32 microcontroller and simulates
|
||||
// the Lorenz system using fixed-point arithmetic. The Lorenz system is a set of
|
||||
// three chaotic differential equations, and the program transmits the generated
|
||||
// data (x, y, z) over the serial port. The output is ideal for visualizing the
|
||||
// Lorenz attractor in real-time using tools like Serial Studio.
|
||||
//
|
||||
// Lorenz System Parameters:
|
||||
// - σ (sigma): 10.0 (controls the rate of rotation in the attractor)
|
||||
// - ρ (rho): 28.0 (sets the "height" of the attractor)
|
||||
// - β (beta): 8.0 / 3.0 (controls the damping)
|
||||
//
|
||||
// How It Works:
|
||||
// - The program calculates the Lorenz attractor using the Euler method, updating
|
||||
// the x, y, and z values at each step based on the Lorenz equations.
|
||||
// - It uses fixed-point arithmetic for precise calculations, which is necessary
|
||||
// due to the ESP32's 32-bit floating-point limitations.
|
||||
// - The ESP32's FreeRTOS capabilities are leveraged to separate simulation and
|
||||
// serial transmission tasks for optimal performance.
|
||||
// - The data is transmitted asynchronously at regular intervals for visualization.
|
||||
//
|
||||
// Required Tools:
|
||||
// - ESP32 microcontroller (e.g., ESP32 DevKit, NodeMCU ESP32, etc.)
|
||||
// - Serial Studio or any serial plotting tool to visualize the data.
|
||||
//
|
||||
// Baud Rates:
|
||||
// - Serial Studio: 115200 baud
|
||||
//
|
||||
// Notes:
|
||||
// - This program is optimized for the ESP32 and may require modifications to work
|
||||
// on other platforms due to its use of FreeRTOS and ESP32-specific features.
|
||||
// - Ensure your ESP32 board is correctly connected and configured for the Arduino IDE.
|
||||
//
|
||||
// How to Run:
|
||||
// - Load this program onto an ESP32 using the Arduino IDE or similar tool.
|
||||
// - Connect to the ESP32 via Serial Studio or another serial plotting tool.
|
||||
// - Observe the real-time Lorenz attractor visualization.
|
||||
//
|
||||
|
||||
#include <Arduino.h>
|
||||
|
||||
// Parameters for the Lorenz system (scaled by 1000 for fixed-point arithmetic)
|
||||
const int32_t sigma = 10000; // σ: 10.0 scaled by 1000
|
||||
const int32_t rho = 28000; // ρ: 28.0 scaled by 1000
|
||||
const int32_t beta = 2666; // β: 8/3 scaled by 1000
|
||||
|
||||
// Initial conditions (scaled by 1000)
|
||||
int32_t x = 100; // Initial X value (0.1 scaled by 1000)
|
||||
int32_t y = 0; // Initial Y value
|
||||
int32_t z = 0; // Initial Z value
|
||||
|
||||
// Time step (scaled by 1000)
|
||||
const int32_t dt = 10; // 0.01 scaled by 1000
|
||||
|
||||
// Interval between data transmissions (microseconds)
|
||||
const unsigned long transmissionInterval = 1000;
|
||||
|
||||
// Queue for asynchronous data transmission
|
||||
QueueHandle_t dataQueue;
|
||||
|
||||
///
|
||||
/// Task to calculate the Lorenz system state
|
||||
///
|
||||
void simulationTask(void *param) {
|
||||
while (true) {
|
||||
// Calculate the derivatives (scaled by 1000)
|
||||
int32_t dx = ((sigma * (y - x)) / 1000) * dt / 1000;
|
||||
int32_t dy = (((x * (rho - z)) / 1000 - y) * dt) / 1000;
|
||||
int32_t dz = (((x * y) / 1000 - (beta * z) / 1000) * dt) / 1000;
|
||||
|
||||
// Integrate the derivatives to update the system's state
|
||||
x += dx;
|
||||
y += dy;
|
||||
z += dz;
|
||||
|
||||
// Send data to the queue
|
||||
int32_t data[3] = {x, y, z};
|
||||
xQueueSend(dataQueue, &data, portMAX_DELAY);
|
||||
|
||||
// Maintain consistent time step
|
||||
vTaskDelay(pdMS_TO_TICKS(1));
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Task to transmit Lorenz system data over Serial
|
||||
///
|
||||
void serialTask(void *param) {
|
||||
while (true) {
|
||||
int32_t data[3];
|
||||
if (xQueueReceive(dataQueue, &data, portMAX_DELAY)) {
|
||||
// Convert data back to float for serial output
|
||||
Serial.print(data[0] / 1000.0, 6);
|
||||
Serial.print(",");
|
||||
Serial.print(data[1] / 1000.0, 6);
|
||||
Serial.print(",");
|
||||
Serial.println(data[2] / 1000.0, 6);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Configures the ESP32, initializes the serial port, and creates tasks
|
||||
///
|
||||
void setup() {
|
||||
// Initialize Serial communication
|
||||
Serial.begin(115200);
|
||||
while (!Serial);
|
||||
|
||||
// Create a queue to hold Lorenz system data
|
||||
dataQueue = xQueueCreate(10, sizeof(int32_t[3]));
|
||||
|
||||
// Create tasks for simulation and data transmission
|
||||
xTaskCreate(simulationTask, "SimulationTask", 4096, NULL, 1, NULL);
|
||||
xTaskCreate(serialTask, "SerialTask", 2048, NULL, 1, NULL);
|
||||
}
|
||||
|
||||
///
|
||||
/// The main loop is empty; tasks handle simulation and data transmission
|
||||
///
|
||||
void loop() {
|
||||
// Do nothing
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user