/***************************************************************************** FFTReal.hpp By Laurent de Soras --- Legal stuff --- This program is free software. It comes without any warranty, to the extent permitted by applicable law. You can redistribute it and/or modify it under the terms of the Do What The Fuck You Want To Public License, Version 2, as published by Sam Hocevar. See http://sam.zoy.org/wtfpl/COPYING for more details. *Tab=3***********************************************************************/ #if defined (ffft_FFTReal_CURRENT_CODEHEADER) #error Recursive inclusion of FFTReal code header. #endif #define ffft_FFTReal_CURRENT_CODEHEADER #if ! defined (ffft_FFTReal_CODEHEADER_INCLUDED) #define ffft_FFTReal_CODEHEADER_INCLUDED /*\\\ INCLUDE FILES \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ #include #include namespace ffft { static inline bool FFTReal_is_pow2 (long x) { assert (x > 0); return ((x & -x) == x); } static inline int FFTReal_get_next_pow2 (long x) { --x; int p = 0; while ((x & ~0xFFFFL) != 0) { p += 16; x >>= 16; } while ((x & ~0xFL) != 0) { p += 4; x >>= 4; } while (x > 0) { ++p; x >>= 1; } return (p); } /*\\\ PUBLIC \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ /* ============================================================================== Name: ctor Input parameters: - length: length of the array on which we want to do a FFT. Range: power of 2 only, > 0. Throws: std::bad_alloc ============================================================================== */ template FFTReal
::FFTReal (long length) : _length (length) , _nbr_bits (FFTReal_get_next_pow2 (length)) , _br_lut () , _trigo_lut () , _buffer (length) , _trigo_osc () { assert (FFTReal_is_pow2 (length)); assert (_nbr_bits <= MAX_BIT_DEPTH); init_br_lut (); init_trigo_lut (); init_trigo_osc (); } /* ============================================================================== Name: get_length Description: Returns the number of points processed by this FFT object. Returns: The number of points, power of 2, > 0. Throws: Nothing ============================================================================== */ template long FFTReal
::get_length () const { return (_length); } /* ============================================================================== Name: do_fft Description: Compute the FFT of the array. Input parameters: - x: pointer on the source array (time). Output parameters: - f: pointer on the destination array (frequencies). f [0...length(x)/2] = real values, f [length(x)/2+1...length(x)-1] = negative imaginary values of coefficents 1...length(x)/2-1. Throws: Nothing ============================================================================== */ template void FFTReal
::do_fft (DataType f [], const DataType x []) const { assert (f != 0); assert (f != use_buffer ()); assert (x != 0); assert (x != use_buffer ()); assert (x != f); // General case if (_nbr_bits > 2) { compute_fft_general (f, x); } // 4-point FFT else if (_nbr_bits == 2) { f [1] = x [0] - x [2]; f [3] = x [1] - x [3]; const DataType b_0 = x [0] + x [2]; const DataType b_2 = x [1] + x [3]; f [0] = b_0 + b_2; f [2] = b_0 - b_2; } // 2-point FFT else if (_nbr_bits == 1) { f [0] = x [0] + x [1]; f [1] = x [0] - x [1]; } // 1-point FFT else { f [0] = x [0]; } } /* ============================================================================== Name: do_ifft Description: Compute the inverse FFT of the array. Note that data must be post-scaled: IFFT (FFT (x)) = x * length (x). Input parameters: - f: pointer on the source array (frequencies). f [0...length(x)/2] = real values f [length(x)/2+1...length(x)-1] = negative imaginary values of coefficents 1...length(x)/2-1. Output parameters: - x: pointer on the destination array (time). Throws: Nothing ============================================================================== */ template void FFTReal
::do_ifft (const DataType f [], DataType x []) const { assert (f != 0); assert (f != use_buffer ()); assert (x != 0); assert (x != use_buffer ()); assert (x != f); // General case if (_nbr_bits > 2) { compute_ifft_general (f, x); } // 4-point IFFT else if (_nbr_bits == 2) { const DataType b_0 = f [0] + f [2]; const DataType b_2 = f [0] - f [2]; x [0] = b_0 + f [1] * 2; x [2] = b_0 - f [1] * 2; x [1] = b_2 + f [3] * 2; x [3] = b_2 - f [3] * 2; } // 2-point IFFT else if (_nbr_bits == 1) { x [0] = f [0] + f [1]; x [1] = f [0] - f [1]; } // 1-point IFFT else { x [0] = f [0]; } } /* ============================================================================== Name: rescale Description: Scale an array by divide each element by its length. This function should be called after FFT + IFFT. Input parameters: - x: pointer on array to rescale (time or frequency). Throws: Nothing ============================================================================== */ template void FFTReal
::rescale (DataType x []) const { const DataType mul = DataType (1.0 / _length); if (_length < 4) { long i = _length - 1; do { x [i] *= mul; --i; } while (i >= 0); } else { assert ((_length & 3) == 0); // Could be optimized with SIMD instruction sets (needs alignment check) long i = _length - 4; do { x [i + 0] *= mul; x [i + 1] *= mul; x [i + 2] *= mul; x [i + 3] *= mul; i -= 4; } while (i >= 0); } } /* ============================================================================== Name: use_buffer Description: Access the internal buffer, whose length is the FFT one. Buffer content will be erased at each do_fft() / do_ifft() call! This buffer cannot be used as: - source for FFT or IFFT done with this object - destination for FFT or IFFT done with this object Returns: Buffer start address Throws: Nothing ============================================================================== */ template typename FFTReal
::DataType * FFTReal
::use_buffer () const { return (&_buffer [0]); } /*\\\ PROTECTED \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ /*\\\ PRIVATE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/ template void FFTReal
::init_br_lut () { const long length = 1L << _nbr_bits; _br_lut.resize (length); _br_lut [0] = 0; long br_index = 0; for (long cnt = 1; cnt < length; ++cnt) { // ++br_index (bit reversed) long bit = length >> 1; while (((br_index ^= bit) & bit) == 0) { bit >>= 1; } _br_lut [cnt] = br_index; } } template void FFTReal
::init_trigo_lut () { using namespace std; if (_nbr_bits > 3) { const long total_len = (1L << (_nbr_bits - 1)) - 4; _trigo_lut.resize (total_len); for (int level = 3; level < _nbr_bits; ++level) { const long level_len = 1L << (level - 1); DataType * const level_ptr = &_trigo_lut [get_trigo_level_index (level)]; const double mul = PI / (level_len << 1); for (long i = 0; i < level_len; ++ i) { level_ptr [i] = static_cast (cos (i * mul)); } } } } template void FFTReal
::init_trigo_osc () { const int nbr_osc = _nbr_bits - TRIGO_BD_LIMIT; if (nbr_osc > 0) { _trigo_osc.resize (nbr_osc); for (int osc_cnt = 0; osc_cnt < nbr_osc; ++osc_cnt) { OscType & osc = _trigo_osc [osc_cnt]; const long len = 1L << (TRIGO_BD_LIMIT + osc_cnt); const double mul = (0.5 * PI) / len; osc.set_step (mul); } } } template const long * FFTReal
::get_br_ptr () const { return (&_br_lut [0]); } template const typename FFTReal
::DataType * FFTReal
::get_trigo_ptr (int level) const { assert (level >= 3); return (&_trigo_lut [get_trigo_level_index (level)]); } template long FFTReal
::get_trigo_level_index (int level) const { assert (level >= 3); return ((1L << (level - 1)) - 4); } // Transform in several passes template void FFTReal
::compute_fft_general (DataType f [], const DataType x []) const { assert (f != 0); assert (f != use_buffer ()); assert (x != 0); assert (x != use_buffer ()); assert (x != f); DataType * sf; DataType * df; if ((_nbr_bits & 1) != 0) { df = use_buffer (); sf = f; } else { df = f; sf = use_buffer (); } compute_direct_pass_1_2 (df, x); compute_direct_pass_3 (sf, df); for (int pass = 3; pass < _nbr_bits; ++ pass) { compute_direct_pass_n (df, sf, pass); DataType * const temp_ptr = df; df = sf; sf = temp_ptr; } } template void FFTReal
::compute_direct_pass_1_2 (DataType df [], const DataType x []) const { assert (df != 0); assert (x != 0); assert (df != x); const long * const bit_rev_lut_ptr = get_br_ptr (); long coef_index = 0; do { const long rev_index_0 = bit_rev_lut_ptr [coef_index]; const long rev_index_1 = bit_rev_lut_ptr [coef_index + 1]; const long rev_index_2 = bit_rev_lut_ptr [coef_index + 2]; const long rev_index_3 = bit_rev_lut_ptr [coef_index + 3]; DataType * const df2 = df + coef_index; df2 [1] = x [rev_index_0] - x [rev_index_1]; df2 [3] = x [rev_index_2] - x [rev_index_3]; const DataType sf_0 = x [rev_index_0] + x [rev_index_1]; const DataType sf_2 = x [rev_index_2] + x [rev_index_3]; df2 [0] = sf_0 + sf_2; df2 [2] = sf_0 - sf_2; coef_index += 4; } while (coef_index < _length); } template void FFTReal
::compute_direct_pass_3 (DataType df [], const DataType sf []) const { assert (df != 0); assert (sf != 0); assert (df != sf); const DataType sqrt2_2 = DataType (SQRT2 * 0.5); long coef_index = 0; do { DataType v; df [coef_index] = sf [coef_index] + sf [coef_index + 4]; df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4]; df [coef_index + 2] = sf [coef_index + 2]; df [coef_index + 6] = sf [coef_index + 6]; v = (sf [coef_index + 5] - sf [coef_index + 7]) * sqrt2_2; df [coef_index + 1] = sf [coef_index + 1] + v; df [coef_index + 3] = sf [coef_index + 1] - v; v = (sf [coef_index + 5] + sf [coef_index + 7]) * sqrt2_2; df [coef_index + 5] = v + sf [coef_index + 3]; df [coef_index + 7] = v - sf [coef_index + 3]; coef_index += 8; } while (coef_index < _length); } template void FFTReal
::compute_direct_pass_n (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass >= 3); assert (pass < _nbr_bits); if (pass <= TRIGO_BD_LIMIT) { compute_direct_pass_n_lut (df, sf, pass); } else { compute_direct_pass_n_osc (df, sf, pass); } } template void FFTReal
::compute_direct_pass_n_lut (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass >= 3); assert (pass < _nbr_bits); const long nbr_coef = 1 << pass; const long h_nbr_coef = nbr_coef >> 1; const long d_nbr_coef = nbr_coef << 1; long coef_index = 0; const DataType * const cos_ptr = get_trigo_ptr (pass); do { const DataType * const sf1r = sf + coef_index; const DataType * const sf2r = sf1r + nbr_coef; DataType * const dfr = df + coef_index; DataType * const dfi = dfr + nbr_coef; // Extreme coefficients are always real dfr [0] = sf1r [0] + sf2r [0]; dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] = dfr [h_nbr_coef] = sf1r [h_nbr_coef]; dfi [h_nbr_coef] = sf2r [h_nbr_coef]; // Others are conjugate complex numbers const DataType * const sf1i = sf1r + h_nbr_coef; const DataType * const sf2i = sf1i + nbr_coef; for (long i = 1; i < h_nbr_coef; ++ i) { const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef); const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef); DataType v; v = sf2r [i] * c - sf2i [i] * s; dfr [i] = sf1r [i] + v; dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] = v = sf2r [i] * s + sf2i [i] * c; dfi [i] = v + sf1i [i]; dfi [nbr_coef - i] = v - sf1i [i]; } coef_index += d_nbr_coef; } while (coef_index < _length); } template void FFTReal
::compute_direct_pass_n_osc (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass > TRIGO_BD_LIMIT); assert (pass < _nbr_bits); const long nbr_coef = 1 << pass; const long h_nbr_coef = nbr_coef >> 1; const long d_nbr_coef = nbr_coef << 1; long coef_index = 0; OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)]; do { const DataType * const sf1r = sf + coef_index; const DataType * const sf2r = sf1r + nbr_coef; DataType * const dfr = df + coef_index; DataType * const dfi = dfr + nbr_coef; osc.clear_buffers (); // Extreme coefficients are always real dfr [0] = sf1r [0] + sf2r [0]; dfi [0] = sf1r [0] - sf2r [0]; // dfr [nbr_coef] = dfr [h_nbr_coef] = sf1r [h_nbr_coef]; dfi [h_nbr_coef] = sf2r [h_nbr_coef]; // Others are conjugate complex numbers const DataType * const sf1i = sf1r + h_nbr_coef; const DataType * const sf2i = sf1i + nbr_coef; for (long i = 1; i < h_nbr_coef; ++ i) { osc.step (); const DataType c = osc.get_cos (); const DataType s = osc.get_sin (); DataType v; v = sf2r [i] * c - sf2i [i] * s; dfr [i] = sf1r [i] + v; dfi [-i] = sf1r [i] - v; // dfr [nbr_coef - i] = v = sf2r [i] * s + sf2i [i] * c; dfi [i] = v + sf1i [i]; dfi [nbr_coef - i] = v - sf1i [i]; } coef_index += d_nbr_coef; } while (coef_index < _length); } // Transform in several pass template void FFTReal
::compute_ifft_general (const DataType f [], DataType x []) const { assert (f != 0); assert (f != use_buffer ()); assert (x != 0); assert (x != use_buffer ()); assert (x != f); DataType * sf = const_cast (f); DataType * df; DataType * df_temp; if (_nbr_bits & 1) { df = use_buffer (); df_temp = x; } else { df = x; df_temp = use_buffer (); } for (int pass = _nbr_bits - 1; pass >= 3; -- pass) { compute_inverse_pass_n (df, sf, pass); if (pass < _nbr_bits - 1) { DataType * const temp_ptr = df; df = sf; sf = temp_ptr; } else { sf = df; df = df_temp; } } compute_inverse_pass_3 (df, sf); compute_inverse_pass_1_2 (x, df); } template void FFTReal
::compute_inverse_pass_n (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass >= 3); assert (pass < _nbr_bits); if (pass <= TRIGO_BD_LIMIT) { compute_inverse_pass_n_lut (df, sf, pass); } else { compute_inverse_pass_n_osc (df, sf, pass); } } template void FFTReal
::compute_inverse_pass_n_lut (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass >= 3); assert (pass < _nbr_bits); const long nbr_coef = 1 << pass; const long h_nbr_coef = nbr_coef >> 1; const long d_nbr_coef = nbr_coef << 1; long coef_index = 0; const DataType * const cos_ptr = get_trigo_ptr (pass); do { const DataType * const sfr = sf + coef_index; const DataType * const sfi = sfr + nbr_coef; DataType * const df1r = df + coef_index; DataType * const df2r = df1r + nbr_coef; // Extreme coefficients are always real df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef] df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef] df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2; df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2; // Others are conjugate complex numbers DataType * const df1i = df1r + h_nbr_coef; DataType * const df2i = df1i + nbr_coef; for (long i = 1; i < h_nbr_coef; ++ i) { df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i] df1i [i] = sfi [i] - sfi [nbr_coef - i]; const DataType c = cos_ptr [i]; // cos (i*PI/nbr_coef); const DataType s = cos_ptr [h_nbr_coef - i]; // sin (i*PI/nbr_coef); const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i] const DataType vi = sfi [i] + sfi [nbr_coef - i]; df2r [i] = vr * c + vi * s; df2i [i] = vi * c - vr * s; } coef_index += d_nbr_coef; } while (coef_index < _length); } template void FFTReal
::compute_inverse_pass_n_osc (DataType df [], const DataType sf [], int pass) const { assert (df != 0); assert (sf != 0); assert (df != sf); assert (pass > TRIGO_BD_LIMIT); assert (pass < _nbr_bits); const long nbr_coef = 1 << pass; const long h_nbr_coef = nbr_coef >> 1; const long d_nbr_coef = nbr_coef << 1; long coef_index = 0; OscType & osc = _trigo_osc [pass - (TRIGO_BD_LIMIT + 1)]; do { const DataType * const sfr = sf + coef_index; const DataType * const sfi = sfr + nbr_coef; DataType * const df1r = df + coef_index; DataType * const df2r = df1r + nbr_coef; osc.clear_buffers (); // Extreme coefficients are always real df1r [0] = sfr [0] + sfi [0]; // + sfr [nbr_coef] df2r [0] = sfr [0] - sfi [0]; // - sfr [nbr_coef] df1r [h_nbr_coef] = sfr [h_nbr_coef] * 2; df2r [h_nbr_coef] = sfi [h_nbr_coef] * 2; // Others are conjugate complex numbers DataType * const df1i = df1r + h_nbr_coef; DataType * const df2i = df1i + nbr_coef; for (long i = 1; i < h_nbr_coef; ++ i) { df1r [i] = sfr [i] + sfi [-i]; // + sfr [nbr_coef - i] df1i [i] = sfi [i] - sfi [nbr_coef - i]; osc.step (); const DataType c = osc.get_cos (); const DataType s = osc.get_sin (); const DataType vr = sfr [i] - sfi [-i]; // - sfr [nbr_coef - i] const DataType vi = sfi [i] + sfi [nbr_coef - i]; df2r [i] = vr * c + vi * s; df2i [i] = vi * c - vr * s; } coef_index += d_nbr_coef; } while (coef_index < _length); } template void FFTReal
::compute_inverse_pass_3 (DataType df [], const DataType sf []) const { assert (df != 0); assert (sf != 0); assert (df != sf); const DataType sqrt2_2 = DataType (SQRT2 * 0.5); long coef_index = 0; do { df [coef_index] = sf [coef_index] + sf [coef_index + 4]; df [coef_index + 4] = sf [coef_index] - sf [coef_index + 4]; df [coef_index + 2] = sf [coef_index + 2] * 2; df [coef_index + 6] = sf [coef_index + 6] * 2; df [coef_index + 1] = sf [coef_index + 1] + sf [coef_index + 3]; df [coef_index + 3] = sf [coef_index + 5] - sf [coef_index + 7]; const DataType vr = sf [coef_index + 1] - sf [coef_index + 3]; const DataType vi = sf [coef_index + 5] + sf [coef_index + 7]; df [coef_index + 5] = (vr + vi) * sqrt2_2; df [coef_index + 7] = (vi - vr) * sqrt2_2; coef_index += 8; } while (coef_index < _length); } template void FFTReal
::compute_inverse_pass_1_2 (DataType x [], const DataType sf []) const { assert (x != 0); assert (sf != 0); assert (x != sf); const long * bit_rev_lut_ptr = get_br_ptr (); const DataType * sf2 = sf; long coef_index = 0; do { { const DataType b_0 = sf2 [0] + sf2 [2]; const DataType b_2 = sf2 [0] - sf2 [2]; const DataType b_1 = sf2 [1] * 2; const DataType b_3 = sf2 [3] * 2; x [bit_rev_lut_ptr [0]] = b_0 + b_1; x [bit_rev_lut_ptr [1]] = b_0 - b_1; x [bit_rev_lut_ptr [2]] = b_2 + b_3; x [bit_rev_lut_ptr [3]] = b_2 - b_3; } { const DataType b_0 = sf2 [4] + sf2 [6]; const DataType b_2 = sf2 [4] - sf2 [6]; const DataType b_1 = sf2 [5] * 2; const DataType b_3 = sf2 [7] * 2; x [bit_rev_lut_ptr [4]] = b_0 + b_1; x [bit_rev_lut_ptr [5]] = b_0 - b_1; x [bit_rev_lut_ptr [6]] = b_2 + b_3; x [bit_rev_lut_ptr [7]] = b_2 - b_3; } sf2 += 8; coef_index += 8; bit_rev_lut_ptr += 8; } while (coef_index < _length); } } // namespace ffft #endif // ffft_FFTReal_CODEHEADER_INCLUDED #undef ffft_FFTReal_CURRENT_CODEHEADER /*\\\ EOF \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*/